Personal Responsibibility In Delivering Excellence

Maths Overview F2 to Year 6

Contents page.

	Maths Vision Statement
	Maths lesson format
	Arithmetic Practice
	Number Sense
	Times Table Superhero tests.
	Resources for planning
	Marking
	Maths STEM sentences.
	EYFS Maths provision
	Year 1 Maths provision
	Year 2 Maths provision
	Year 3 Maths provision
	Year 4 Maths provision
	Year 5 Maths provision
	Year 6 Maths provision
	Overviews.

Maths vision statement.

SUTTO NOAP PRIMARY SCHOOOANO NUSERERY

At Sutton Road Primary school and Holgate Primary School, we believe that mathematics is an important life skill.

Our Maths overviews enable our children to gain the necessary understanding, skills and knowledge that will empower them to gain the confidence and enjoyment of mathematics.

We believe that mathematics:

- must prioritise fluency so all children can access and develop concepts,
- make links to and across the curriculum and deepen understanding.
- embolden children to become problem-solvers.
- should provide children with opportunities to reason and think logically.

In order to instill all of these in each Maths lesson taught, we have an 'Reactivate, model, practice and independent' approach to 4 weekly maths lessons. The Reactivate is designed to recap on key maths skills required for the main learning intention. The model section of the Maths lesson is where the teaching demonstrates several examples of the teaching being taught which can include manipulatives and visual representations. The Practice section of the lesson enables children to work alongside the teacher to practice the skills required for the independent task. During the independent part of the lesson children apply the skills they have practiced independently to achieve the learning intention. Adaptations are provided for individuals so that they can achieve the intended learning intention. This could include place value grids, use of manipulatives or templates for working out.

Maths lesson format.

SUTION ROAD PRIMARY
SCHOOA AOBUSERAY

As a collaboration we have agreed on a Maths lesson format for years 1-6.

The agreed Maths lesson format:

- Reactivate
- Model
- Practice
- Independent

Arithmetic Practice.

As a collaboration we have agreed on arithmetic tests being taught fortnightly. These are to take place at the end of the week during Maths lesson time.

Within that lesson children need to complete the test and mark it with you as a class. Your main role during this is to go through questions children are unsure of and sharing efficient strategies - ideally on the whiteboard or flipchart paper.

These scores are to be recorded to give you information on progress over a period of time.

```
Useful links:
Arithmetic tests
WAGOLL of recording weekly arithmetic scores.
```

Number Sense

As a collaboration we have agreed on a Number Sense sessions being taught fortnightly. These are taught on alternate weeks with the arithmetic paper. These are to take place at the end of the week during Maths lesson time.

Within this session, children will look at the place value of number in greater detail, improving their fluency skills which provide the necessary building blocks of the deeper understanding we desire all children to achieve.

Superhero times table test.

SUTOR ROAP PRIMARY
SCHOOO ANO NUSESRY
As a collaboration we have agreed on a weekly Superhero Times Table test.

The tests are progressive and timed. Each test follows a similar format that includes recall questions, division facts and worded problems.

Every half-term Maths leads will ask each Class Teacher for an update on where each individual child is so we can track progress and prepare children for the Year 4 Multiplication test.

Useful links:
Superhero Times Table Test resources.
Superhero Times Table tracker

Resources for planning.

We encourage you to use a wide range of resources for your planning or to take inspiration from resources that already exist such as the White Rose premium resources.

Allow children the opportunity to use Maths equipment during lessons such as Numicon, dienes and shapes. Each school has a specific Maths cupboard where resources are kept. If you notice something is missing or is needed, please let the Maths lead know ASAP.

Useful links:
Resources to support planning

Marking Symbols

These are marking symbols that are to be used across the school within the subject of Maths.

General

Verbal Feedback	Supported	Independent	
Verbal feedback given to support teaching and learning.	Support given to achieve an objective and aid teaching and learning.	Independent work achieved in meeting a learning objective.	

Maths Stem Sentences

All children need to have the opportunity to answer questions using written explanations as this supports their understanding and progression within Maths

Here are some generic open-ended questions but within this document we have specified certain questions that can be used for the different areas of the Maths curriculum for each year group.

These questions can be displayed on the IWB included in the anchor task or included in the chili challenges.

Open-ended sentence stems

- I noticed that ...
- I decided to ... because...
- First Itried ...
- I already know that ...
- so
- When I looked at ...
- I noticed that ..
- This didn't work, so ...
- I know this is true because ...
- This reminds me of
- I noticed a connection between ...
- I wondered why ...
- I have used the method because
\qquad

Foundation 2 - Mathematics (place value/numerical patterns)

F2	Year 1 Vocabulary
Subitise	less/fewer - less is something that you cannot count, fewer is
Order	something you can count. One more/one less Bigger/smaller Less/more
Same/different part Repeat whole	
Unit	group altogether
Numbers past 10 are '10 and a bit (e.g.	partition Children should be able to say 'x represents y' One more/ one less
12 is made of a full 10 and 2)	half way between double even number

Maths STEM sentences: (verbalised)

- Which has more/less?
- Which has most/least?
- Which is biggest/smallest?
- 12 is made up of 10 and 2 ones, 13 is made up of 10 and 3 ones.

	F2	Year 1
Number bonds	Automatically recall number bonds for numbers 0-10. Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.	Represent and use number bonds and related subtraction facts within 20
Mental calculations	Count objects, actions and sounds. Count beyond ten. Subitise. Link the number symbol (numeral) with its cardinal numbervalue. Link the number symbol (numeral) with its cardinal numbervalue. Compare numbers. Understand the 'one more than/one less than' relationship between consecutive numbers. Explore the composition of numbers to 10. Verbally count beyond 20, recognising the pattern of the counting system. Subitise (recognising quantities without counting) up to 5 . Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. Have a deep understanding of numbers to 10 , including the composition of each number.	Add and subtract one digit and two-digit numbers to 20 , including zero add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds
Written calculations	Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)

EYFS Addition

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
EYFS	If available, Numicon shapes are introduced straight away and can be used to- Identify 1 more/less Combine pieces to add Find number bonds Add without counting Subitise/recognise patterns to support addition for example arrange objects as you would see them on a dice. Adding with a tens frame for example we know if a tens frame is full this is 10 , one line equals 5 , one less than a line equals 4 etc.	6+4 7+3 $8+2$ Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars). Counting on using number lines using cubes or Numicon. $+56$	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too. A bar model which encourages the children to count on, rather than count all. 0000000 Children can use bead strings practically or colouring in different sums. For example: $4+3=7$	$4+3=7$ Four is a part, 3 is a part and the whole is seven. $\begin{aligned} & 7=4+3 \\ & 7=3+4 \end{aligned}$ The abstract number line: What is 2 more than 4? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$	Tens Ones Units Add More And Make Sum Total Altogether Double One more two more ten more Add five more. How many more to make? How many more is ... than ...?	100 square Number lines Number tracks Bead strings Tens Frame Numicon Place Value Counters Base ten (Dienes)

Foundation 2 - Mathematics Addition

F2	Year 1 Vocabulary
Add Combine Total together Altogether Group Whole/not whole Part One more double Equals More	less/ fewer - less is something that you cannot count, fewer is something you can count. whole/ not whole Children should be able to say ' x represents y ' half way between even number
Maths STEM sentences: (verbalised not written) - X on this hand and y on this hand and this makes z altogether. \qquad $+$ \qquad = \qquad	

	F2	Year 1
Number bonds	Automatically recall number bonds for numbers 0-10 Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.	Represent and use number bonds and related subtraction facts within 20
Mental calculations	Count objects, actions and sounds. Count beyond ten. Subitise. Link the number symbol (numeral) with its cardinal numbervalue. Link the number symbol (numeral) with its cardinal numbervalue. Compare numbers. Understand the 'one more than/one less than' relationship between consecutive numbers. Explore the composition of numbers to 10 . Verbally count beyond 20 , recognising the pattern of the counting system. Subitise (recognising quantities without counting) up to 5 . Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. Have a deep understanding of numbers to 10 , including the composition of each number.	Add and subtract onedigit and two-digit numbers to 20 , including zero add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds
Written calculations	Explore and represent patterns with in numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
EYFS	Children are encouraged to read number sentences aloud in different ways "five take away one leaves four" "four is equal to five take away one" Children make a record in pictures, words or symbols of subtraction activities carried out. Solve simple problems using fingers	Physically taking away and removing objects from a whole Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).	Counting back (using number lines or number tracks) children start with 6 and count back 2. Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. $4-3=1$ Children to represent what they see pictorially e.g. $6-2=4$ Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line $\begin{aligned} & 7-3=4 \\ & 7-4=3 \end{aligned}$	Take (away) Leave How many are left/left over? How many have gone? One less, two less ... ten less... How many fewer is ... than Difference between Is the same as	100 square Number lines Number tracks Bead strings Tens Frame Numicon Place Value Counters Base ten

Foundation 2 - Mathematics Subtraction.
$\left.\begin{array}{l|l|}\hline \text { F2 } & \text { Year 1 Vocabulary } \\ \hline \begin{array}{l}\text { Less/fewer } \\ \text { One less } \\ \text { Part/part whole } \\ \text { Take away } \\ \text { Subtract } \\ \text { Minus } \\ \text { Smaller }\end{array} & \begin{array}{l}\text { less/fewer - less is something that you cannot count, fewer is } \\ \text { something you can count. } \\ \text { whole/ not whole }\end{array} \\ \text { part } \\ \text { partition } \\ \text { Children should be able to say ' x represents } y^{\prime} \\ \text { half way between } \\ \text { even number }\end{array}\right]$

Primary Calculation Policy

EYFS Multiplication

Year 1 Vocabulary
Groups of
Lots of
Repeat
Repeated addition
'One group of ten, two groups of ten,'
Group
Groups
Double
Half

Maths STEM sentences: verbalised

- How many groups/lots of do we have?
- How many would you have if you had \qquad groups of \qquad ?

	Foundation 2 - Division.	
		F2
	Times Tables	
	Mental calculations	
	Written calculations	

EYFS Division

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
EYFS	Count in twos; fives; tens both aloud and with objects.	Grouping or Sharing Model I have 10 cubes, can you share them equally in 2 groups?	Grouping or Sharing Model Children to draw the concrete resources they are using. $6 \div 3=2$ $10 \div 2=5$	Grouping or Sharing Model Write the number sentence $\begin{aligned} & 6 \text { socks make } 3 \text { groups of } 2 \\ & 10 \begin{array}{l} \text { sweets } \\ \text { shared } \\ \text { between } \end{array} \end{aligned}$	Share Sharing grouping Equal Groups Left over Half Halving	100 square Number lines Number tracks Bead strings Tens Frame Numicon Place Value Counters Base ten (Dienes)

F2	Year 1 Vocabulary
Share Fair Equal Same Different Half (objects)	'One group of ten, two groups of ten,' Group Groups Half (numerical)
Maths STEM sentences: verbalised - One for me, one for you - Is it fair? - Have we got the same/different?	

Foundation 2 - Mathematics Shape

F2	Year 1 Vocabulary
Circle Triangle Square Rectangle shape Sides/side Same/different Long Short Equal The same Corners/points Straight Curved round Flat 2d 3d Solid Not flat Cube	Cuboid Cylinder Pyramid Sphere
- Maths STEM sentences (verbalised not written: - Doesitroll? - My shape has got \qquad equal sides. What shape could it be? - Is it still a triangle if I turn it round? - Which shape is the odd one out?	
EYFS framework Mathematics in EYFS information.	

Foundation 2 - Mathematics Position and direction

F2	Year 1 Vocabulary
Turn	Clockwise
Next to	Anti-clockwise
Behind	
On	
Under	
Over	
In front of	
Behind	
In between	
In the middle	
Inside	
In/out	
Up and down	

- Maths STEM sentences:
- The rabbit is \qquad the table

EYFS framework

Mathematics in EYFS information.

Foundation 2 - Mathematics Measurement.

SUTION ROD PRIMARY
SCHHOOAND NUSSRYY

F2 vocabulary	Year 1 Vocabulary
bigger/smaller heavier/lighter taller/shorter older/younger longer/shorter more / fewer	greater/more than less/fewerthan equal to
Equal	the same length as the same weight as
Balance	bigger/biggest Weigh
smaller/smallest	
Measure	estimate
Full	
Halffull	
Empty	
Wide	
Narrow	
Thin	
Order	
Short/shorter/shortest	
Long/longer/longest	
Further/furthest	
taller/tallest	

Maths STEM sentences:

- Can you make a long/short/thick/thin snake?
- How many blocks long is your snake?
- Can you find something longer/short/thinner/thicker than \qquad ?
- How could you measure \qquad ?

Foundation 2 - Mathematics Measurement (Time).

Maths STEM sentences:

- What day comes after \qquad ?
- How fast can you
- What comes before/after \qquad ?

EYFS framework

Mathematics in EYFS information.

	Year 1 - Addition		
		F2	Year 1
	Number bonds	Automatically recall number bonds for numbers 0-10. Automatically recall (without reference to rhymes, counting or otheraids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts.	Represent and use number bonds and related subtraction facts within 20
	Mental calculations	Count objects, actions and sounds. Count beyond ten. Subitise. Link the number symbol (numeral) with its cardinal numbervalue. Link the number symbol (numeral) with its cardinal numbervalue. Compare numbers. Understand the 'one more than/one less than' relationship between consecutive numbers. Explore the composition of numbers to 10. Verbally count beyond 20, recognising the pattern of the counting system. Subitise (recognising quantities without counting) up to 5. Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. Have a deep understanding of numbers to 10 , including the composition of each number.	Add and subtract onedigit and two-digit numbers to 20 , including zero add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds
	Written calculations	Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)
Previous, current and future learning linked to addition.			

Previous, current and future learning linked to addition.

Year 1 - Subtraction

Year 1 - Subtraction.

Year 1 Vocabulary
less/ fewer - less is something that you cannot count, fewer is something you can count.
whole/ not whole
part
partition
Children should be able to say ' x represents y'
half way between
even number

Maths STEM sentences:

- There were \qquad first, then I took away \qquad Now there are \qquad -
- First there were \qquad Then there were \qquad Now there are
\qquad -.

Year 1 - Multiplication
$\left.\begin{array}{|l|l|l|}\hline \text { Times Tables } & \text { F2 } & \begin{array}{l}\text { Year } 1 \\ \text { Count in multiples of twos, fives and tens } \\ \text { (copied from Number and Place Value) count } \\ \text { in steps of 2,3, and 5 from 0, and in tens } \\ \text { from any number, forward or backward } \\ \text { (copied from Number and Place Value) count } \\ \text { from 0 in multiples of 4, 8, 50 and 100 } \\ \text { (copied from Number and Place Value) }\end{array} \\ \hline \text { Mental calculations } & & \begin{array}{l}\text { Making links } \\ \text { If one teddy has two apples, how many } \\ \text { apples will three teddies have? }\end{array} \\ \hline \text { Here are 10 lego people If 2 people fit into } \\ \text { the train carriage, how many carriages do we } \\ \text { need? }\end{array}\right\}$

Previous, current and future learning linked to multiplication.

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabular y	Models, Images and resources
$\begin{gathered} \text { Year } \\ 1 \end{gathered}$	Count on from and back to zero in ones, twos, fives or tens Make connections between arrays, number patterns, and counting in twos, fives and tens. Recognise odd and even numbers	Repeated Addition - Counting in 2 s (also apply to counting in 10's and 5's) Use images of different objects There are 7 groups of Tens frames can also be used to show times tables such as $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Repeated Addition - - Counting in 2s Draw the objects 00000 $\infty 000$ There are 7 groups of 2 Tens frames can also be used to show times tables such as $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Repeated Addition - - Counting in 2s Can use bar model, number line and equation $2+2+2+2+2+2+2=14$ $2 \times 7=14$ (introduce the multiplication symbol) Introduce the multiplication symbol $\begin{aligned} & 5+5+5=5 \times 3= \\ & 15 \end{aligned}$	Lots of Groups of Times Multiply Repeate d addition Double Sets Groups, Pairs Array	100 square Number lines Number tracks Bead strings. Tens Frame Numicon Place Value Counters Base ten (Diennes).

Year 1 - Multiplication.

Groups of
Lots of
Repeat
Repeated addition

'One group of ten, two groups of ten,'

Group
Groups
Double
Half

Maths STEM sentences:

- The number \qquad will not appear on the number line because \qquad _ birds altogether.
- There are \qquad birds in each tree. There are \qquad trees. There are \qquad _.
- There are ___ groups/rows of ___ apples. Which is the same as \qquad
- The pencils are in groups of 10 , so we will count in tens.

Year 1 - Division.

Year 1	Year 1
Times Tables	Count in multiples of twos, fives and tens (copied from Number and Place Value) count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value) count from 0 in multiples of 4, 8,50 and 100 (copied from Number and Place Value)
Mental calculations	Making links If one teddy has two apples, how many apples will three teddies have? Here are 10 lego people If 2 people fit into the train carriage, how many carriages do we need?
Written calculations	Practical If we put two pencils in each pencil pot how many pencils will we need?
Previous, current and future learning linked to division.	

Year One Division

Year 1 - Division.

F2	Year 1 Vocabulary
Share	'One group of ten, two groups of ten,'
Fair	Group
Equal	Groups
Same	Half (numerical)
Different Half (objects)	

Maths STEM sentences:

- There are ___ equal groups with \qquad in each group.
- $\underline{7}$ groups of $\underline{5}$ go into $\underline{35}$.

Year 1 - Shape

F2 Vocabulary	Year 1 Vocabulary
Circle Triangle Square Rectangle shape Sides/side Same/different Long Short Equal The same Corners/points Straight Curved round Flat 2d 3d Solid Not flat Cube	Clockwise Anti-clockwise Cuboid Cylinder Pyramid Sphere
Maths STEM sentences: This shape could be \qquad because \qquad \qquad is the odd one out because \qquad A \qquad has \qquad sides/corners.	

Year 1 - Measurement

F2 vocabulary	Year 1 Vocabulary
bigger/smaller	greater/more than
heavier/lighter	less/fewerthan
taller/shorter	equal to
older/younger	the same length as
longer/shorter	the same weight as
more/fewer	bigger/biggest
Equal	smaller/smallest
Balance	estimate
Weigh	
Measure	
Full	
Halffull	
Empty	
Wide	
Narrow	
Thin	
Order	
Short/shorter/shortest	
Long/longer/longest	
Further/furthest	
taller/tallest	

Maths STEM sentences:

- The man is ____ than the boy
- The \qquad is \qquad cubes long.
- The \qquad is longer than the \qquad .
- The \qquad is heavier/lighter than the \qquad .
- The \qquad will hold \qquad cups of water.

Year 1 - Fractions

- Maths STEM sentences:
- I know a whole has ___ parts. Each part is worth a \qquad This is the same as $\underline{1 / 2}$.
- The whole is \qquad Half of \qquad is \qquad _.

Year 2 - Place value

Year 1 Vocabulary	Year 2 Vocabulary		
less/ fewer-less is something that you cannot count, fewer is something you can count. whole/ not whole part group altogether partition Children should be able to say ' x represents y^{\prime} One more/ one less half way between double even number	ones tens groups of ten	\quad	Emphasis on reasoning:
:---			
Children should be able to reason about position of numbers on a			
'a is 36 because it is one more than the midpoint of $35 '$			
'b is 79 because it is one less than 80^{\prime}			

Maths STEM sentences:

- There are \qquad tens and \qquad ones. The number is \qquad
- \qquad $+$
- 42 is \qquad than 46 (more than, less than or equal to)
- $30+8$ is \qquad thirty eight (more than, less than or equal to)
- ___ is greater than/less than/</>/=
\qquad is ten more than \qquad . The \qquad column changes.
- I know that
\qquad
\qquad (words).
- A is \qquad because it is one more than the midpoint of \qquad .
- C is \qquad because it is one less than \qquad _.

Previous, current and future learning linked to place value

Year 2 - Addition

	Year 1	Year 2	Year 3
Numberbonds	Represent and use number bonds and related subtraction facts within 20	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100	
Mental calculations	Add and subtract onedigit and two-digit numbers to 20 , including zero add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	Add and subtract onedigit and two-digit numbers to 20 , including zero add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	Add and subtract onedigit and two-digit numbers to 20 , including zero add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds
Written calculations	Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
$\begin{gathered} \text { Year } \\ 2 \end{gathered}$	Use counting sticks, counting on, fingers or songs to add together 2 small amounts mentally. Add a single-digit number to a two-digit number, including crossing the tens boundary, e.g. $23+5$, then $28+5$ Add a multiple of 10 to any twodigit number, e.g. $27+60$ add two two-digit numbers Add near doubles, e.g. $13+$				Add Sum More than Total Altogether Plus Digit Partition into tens and ones/units	100 square Number lines Number tracks Bead strings Tens Frame Numicon Place Value Counters Base ten (Dienes) Arrow Cards

Year 2 - Addition
SUTION ROAD PRMAR

Year 2 Vocabulary
addends (numbers to be added together)
sum
pairs of addends (encourage children to make addition of 3
addends more simple by looking for pairs of addends that sum
10)
plus
Cherry diagram

Maths STEM sentences:

- There were \qquad first, then I added \qquad Now there are \qquad —.
- First there were $2 \underline{8}$ turtles. Then 32 joined the group. Now there are 60 turtles.
- First there were \qquad then \qquad more were added. Now there are \qquad -
- 4 plus 3 is equal to 7 . So 4 tens and plus 3 tens is equal to 7 tens.

Previous, current and future learning linked to subtraction.

Year Two Subtraction

Year 2 - Subtraction

Year 1 Vocabulary
Year 2 Vocabulary
less/ fewer - less is something that you cannot count, fewer is something you can count.
whole/ not whole
part
partition
Children should be able to say ' x represents y '
half way between
even number
subtrahend
minuend
minus
equation
difference
plus one
minus one

Maths STEM sentences:

- There were \qquad first, then I took away \qquad Now there are \qquad .
- I can exchange 10 ones for 1 ten because \qquad -
- 10 minus 3 is equal to 7 . So 30 minus 3 is equal to 27 .

Year 2 - Multiplication

Year 3

Count in multiples of twos, fives and tens (copied from Number and Place Value) count insteps of 2 3 , and 5 from 0 , and in tens from any number, forwa rd or backward (copied from Number a nd Pla ce Value) count from 0 in multiples of 4, 8,50 and 100 (copied from Number a nd Place Value)

Recall and use multiplication and division facts fo the 3,4 and 8 multiplication table

Write a nd calculate mathematical statements for multi plication and division using the multiplication tables that they know, including for use place value known and derived facts to multiply a nd divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multi plying multiply a nd divide numbers mentally dra wing upon known facts perform mental cal culations, including with mixed operations and large numbers Number: Multiplication and Division with Reasoning two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
Cal culate mathematical statements for multiplication and division within the multiplication ta bles a nd write them using the multiplication (x), division (\div) and equals ($=$) signs write and calculat mathe matical statements for multiplication a nd division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental a nd progressing to formal written methods.

Year Two Multiplication

Year 2 - Multiplication

Year 1 Vocabulary	Year 2 Vocabulary
'One group of ten, two groups of ten,' Group Groups Double Half	equal groups divided multiple repeated addition ' x represents the number of groups' pairs - 'How many pairs?' factor times factor equals product multiple Children should be able to reason about this: 'the order of the factors does not affect the product'
Maths STEM sentences: - There are \qquad equal groups with \qquad in each group. - I know the total is \qquad because \qquad \qquad x \qquad = \qquad \qquad	

Times Tables	Year 1 Count in multiples of twos, fives and tens (copied from Number and Place Value) count in steps of 2, 3, and 5 from 0, and in tens from any number, forward or backward (copied from Number and Place Value) count from 0 in multiples of 4, 8,50 and 100 (copied from Number and Place Value).
Mental calculations	
Written calculations	

Year 2
Count in multiples of twos, fives and tens (copied from Number and Place Value) count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value) count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value).

Count in multiples of twos, fives and tens (copied from Number and Place Value) count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value) count from 0 in multiples of $4,8,50$ and 100 (copied from Number and Place Value).
Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying multiply and divide numbers mentally drawing upon known facts perform mental calculations, including with mixed operations and large numbersNumber: Multiplication and Division with Reasoning two-digit numbers times onedigit numbers, using mental and progressing to formal written methods.
Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.

Year 3

 multiplication tables and write them using themultiplication and division withinthe multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals $(=)$ signs write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
ne

Year Two Division

	Mental Strategies	Concrete	Pictorial	Abstract					Vocabula ry	Models, Images and resources
$\begin{gathered} \text { Year } \\ 2 \end{gathered}$									Divide Share equally One each, two each..., Grouping Equal groups How many lots of.... How many groups of... half of halved symbol \div	100 square Number lines Number tracks Bead strings Tens Frame Numicon Place Value Counters Base ten (Dienes)

Introducing the concept of a
remainder (Greater Depth ITAF
statement)
Divide objects into groups or share
equally and see how much is left
over.
$14 \div \mathbf{3}=\mathbf{4} \mathbf{~} \mathbf{2}$

Year 2 - Division

SUTON ROAD PRIMARY

Year 1 Vocabulary	Year 2 Vocabulary
'One group of ten, two groups of ten,' Group Groups Half (numerical)	equal groups repeated addition
	'x represents the number of groups'
divided	

Maths STEM sentences:

- There are \qquad equal groups with \qquad in each group.
- $\underline{7}$ groups of $\underline{5}$ go into $\underline{35}$.

Year 2 - Shape
$\left.\left.\begin{array}{l|l|l}\hline \text { Year } 1 \text { Vocabulary } & \text { Year } 2 \text { Vocabulary } \\ \hline \begin{array}{l}\text { Clockwise } \\ \text { Anti-clockwise } \\ \text { Cuboid } \\ \text { Cylinder } \\ \text { Pyramid } \\ \text { Sphere }\end{array} & \begin{array}{l}\text { vertex } \\ \text { vertices } \\ \text { faces }\end{array} \\ \text { edges } \\ \text { equal internal angles } \\ \text { regular } \\ \text { irregular } \\ \text { parallel } \\ \text { perpendicular } \\ \text { long }\end{array}\right] \begin{array}{l}\text { thin } \\ \text { short } \\ \text { wide } \\ \text { triangular } \\ \text { fatter } \\ \text { lines of symmetry } \\ \text { reflection } \\ \text { mirrorline }\end{array}\right]$

Year 2 - Measurement

Year 1 Vocabulary	Year 2 Vocabulary
greater / more than	midpoint less / fewer than equal to way estimate ese the same length as the same weight as bigger/biggest smaller/ smallest estimate

Maths STEM sentences:

- 15 cm is ___ 67 cm . (longer than, shorter than, the same as, $<,>$ or $=$)
- $55 \mathrm{~cm}+10 \mathrm{~cm} \ldots 55 \mathrm{~cm}-10 \mathrm{~cm}$. (longer than, shorter than, the same as, <, > or =)
- The \qquad is \qquad cm longer than the \qquad _.
tortoise has moved \qquad squares to the
- The \qquad moved squares. I can tell this because \qquad -.
- The next shapes was \qquad .

Year 2 - Fractions

Year 1 Vocabulary	Year 2 Vocabulary
Half	Half
Quarter	Two quarters
Equal	Three quarters Third

- Maths STEM sentences:
- I know a whole has \qquad parts. Each part is worth a \qquad This is the same as $1 / 2$.
- The whole is \qquad Half of \qquad is \qquad
- I know that ___ of the shape is shaded because \qquad .
- One quarter ($1 / 4$) of \qquad is \qquad .
- I know that I have found a quarter/third of something because \qquad .
\qquad is equal to \qquad I know this because \qquad

[^0]
Year 2 - Statistics

Year 1 Vocabulary	Year 2 Vocabulary
N/A	Pictograms Tally chart Block diagram Simple chart

Maths STEM sentences:

- I know that one mark means \qquad -
- I know that every fifth marker \qquad -
- I drew \qquad pictures because
\qquad because \qquad .
- How would we represent zero?

Previous, current and future learning linked to statistics.

Year 3 - Place Value

Year 2 Vocabulary	Year 3 Vocabulary
ones tens groups of ten Emphasis on reasoning: Children should be able to reason about position of numbers on a number line: 'What are the values of a, b and c on the number line?' ' a is 36 because it is one more than the midpoint of 35 ' ' b is 79 because it is one less than 80 ' midpoint half way estimate Compare	Emphasis on base 10 structures of the number system: Children should be able to reason about place value and say sentences such as: ' 10 tens is equal to 1 hundred' ' 18 tens is equal to 10 tens and 8 more tens' ' 100 is 10 times the size of 10 ' exchange expression previous multiple (of 10/100) next multiple estimate compare/ing

Maths STEM sentences:

- When I partition
- \qquad $+\quad+$
\qquad there are \qquad hundred, \qquad tens and \qquad ones.
- $\overline{342}$ is \qquad $+\quad-\quad+$
\qquad $+$
- If I added one more \qquad
- ___ is closest to 250 because \qquad _.
- I know that \qquad is ten/hundred more than \qquad _. The \qquad
- I have ordered numbers this way because \qquad
\qquad
\qquad
- When rounding to the nearest ____, we look at the \qquad column.
\qquad is between \qquad and \qquad
- $\overline{\text { know }}$ \qquad (digits) can also be written as \qquad _ (words).
- 10 tens is equal to 1 hundred.
- 18 tens is equal to 10 tens and 8 more tens. 10 tens are equal to 100 . So 18 tens are equal to 100 and 8 more tens, which is 180 .
- 100 is 10 times the size of 10 .
- The previous multiple of 10 is \qquad The next multiple of 10 is \qquad .

Year 3 - Addition

	Year 2	Year 3	Year 4	Pimary end Nussery 5 chool
Number Bonds	Recall and use a ddition and subtraction facts to 20 fluently, and derive and use related facts up to 100			
Mental calculations	Add a nd subtract one digit and two-digit numbers to 20 , including zero add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * a dding three one-digit numbers add and subtract numbers mentally, induding: * a three-digit number and ones * a three-digit number and tens * a three-digit number a nd hundreds	add and subtract numbers mentally, induding *a three-digit number and ones *a three-digit number and tens *a three-digit number and hundreds		
Written calculations	Read, write and interpret mathematical statements involving addition (+), subtraction () and equals (=) signs (appears also in Mental Calculation).	Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction.	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.	
Previous, current and fu				

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabular y	Models, Images and resources
$\begin{gathered} \text { Year } \\ 3 \end{gathered}$	Use number bonds to 20 and links to bonds of multiples of 10 to 100, complements to 100 e.g. $45+55$ $=100$ Practise solving varied addition questions mentally with two-digit numbers, the answers could exceed 100. Add numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds Recall number bonds to 20 fluently and derive and use related facts to 100 Partition numbers in different ways Eg; $62=60+2,50+12,40+22$ etc Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. Apply mental strategies to written methods:	2-digit + 2-digit crossing 10s (into 100) See Y2 and now crossing 100s and bridging/carrying $86+48=134$		2-digit + 2-digit crossing 10s (into 100) See Y2 and now crossing 100s and bridging/carrying $86+48=134$ Introduce column addition: For $76+47$ $\frac{+47}{\frac{123}{11}}$	Add Sum More than Total Altogether Plus Partition into hundreds, tens and ones/units Count on Carry ten Bridge ten	100 square Number lines Number tracks Tens Frame Numicon Place Value Counters Base ten (Dienes) Arrow Cards

Year 3 - Addition

Year 2 Vocabulary	Year 3 Vocabulary
addends (numbers to be added together) sum pairs of addends (encourage children to make addition of 3 addends more simple by looking for pairs of addends that sum 10)	Complements to 100 Columnar addition
plus Cherry diagram	

Maths STEM sentences:

- Write a story for the calculation $500+400=900$.
- - Always, sometimes, never? When you add ones to a number it affects the tens column.
- $-452+4$ tens = \qquad
- ___ is greater than/less than/</>/= \qquad
- - I can exchange 10 ones for 1 ten because \qquad
- - I can exchange 10 tens for 1 hundred because \qquad

Year 3 - Subtraction

	Year 2	Year 3	Year 4
Number Bonds	Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 .		
Mental calculations	Add and subtract one digit and two-digit numbers to 20 , including zero add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	Add and subtract numbers mentally, including: *a three-digit number and ones *a three-digit number and tens *a three-digit number and hundreds	
Written calculations	Read, write andinterpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation).	Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction.	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
$\begin{gathered} \text { Year } \\ 3 \end{gathered}$	Recall number bonds to 20 and links to bonds of multiples of 10 to 100 complements to 100 e.g. $100-55=45$ Practise solving varied subtraction questions mentally with two-digit numbers, the answers could exceed 100 Subtract numbers mentally, including: a three-digit number and ones	Subtracting a 2-digit from a 2-digit number not crossina the tens blocks to make the bigger number then take the smaller number away. Subtracting a 2-digit from a 2-digit number crossing the tens $41-23=$ \square Subtracting a 3-digit from a 3-digit number not crossing the tens \square \square $1 / 1 \mid-\square$	Subtracting a 2-digit from a 2digit number not crossing the tens Subtracting a 2-digit from a 2digit number crossing the tens 64-17 - can be drawn in place value grids	Subtracting a 2-digit from a 2digit number not crossing the tens Subtracting 3 digit numbers crossing tens and hundreds Use formal written methods where exchange is also required.	Subtraction Partition into hundreds, tens and ones Count on Carry back First Then Now Empty number line Difference Find the difference Decrease by	100 square Number lines Number tracks Bead strings Tens Frame Numicon Place Value Counters Base ten (Diennes) Arrow Cards

Year 2 Vocabulary	Year 3 Vocabulary
subtrahend	'5 ones minus 3 ones is equal to 2 ones'
Minuend	Columnar subtraction Minus difference
Maths STEM sentences:	Missing part

Year 3 - Multiplication

Year 2 Year 3
 Year 4

	Year 2	Year 3	Year 4
Multiplication and division facts	Count in steps of 2,3 , and 5 from 0 , and in tens from any number, forwardor backward. Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.	Count from 0 in multiples of $4,8,50$ and 100. Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables.	Count in multiples of 6, 7, 9, 25 and 1000. Recall multiplication and division facts for multiplication tables up to 12×12.
Mental calculations		Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods(appears also in Written Methods).	Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.
Written calculations	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs.	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods).	Multiply two-digit and three-digit numbers by a one-digit number using formal written layout.

Previous, current and future learning for multiplication

Year 3 Multiplication

Year 3 - Multiplication

Year 2 Vocabulary	Year 3 Vocabulary
equal groups repeated addition 'x represents the number of groups' factor times factor equals product multiple	'3 times 5 is equal to 15'

Maths STEM sentences:

- There are \qquad equal groups with \qquad in each group.
- I know the total is \qquad because \qquad .
- $\quad \mathrm{x}$ \qquad $=$ \qquad Proveit.
- _x \qquad $=$ \qquad x \qquad Prove it.

- I can times by 4 twice to find out what times 8 is. This is because \qquad
- Charlotte answered the question 27×3 and got the answer 6021 . I know the mistake she has made is \qquad .
- 30 is \qquad times bigger than 5 so \qquad x \qquad
\qquad
- How many different ways can you find the make 30 ? The method I used was \qquad -
- 4 times 5 is 20 , so 20 divided by 5 is 4 .
- 3 times 5 is equal to 15.3 times 5 tens is equal to 15 tens. 15 tens is equal to 150 .
- factor times factor is equal to product.
- The order of the factors does not affect the product.

Year 3 - Division

Year 2 Vocabulary	Year 3 Vocabulary
equal groups 'x represents the number of groups' divided pairs - 'How many pairs?'	divided by

Maths STEM sentences:

- There are __ equal groups with \qquad in each group.
- _- x \qquad $=$ \qquad \div \qquad Proveit.
- _x \qquad $=\quad \times$ \qquad Proveit.
- $\underline{7}$ groups of 4 go into $\underline{28}$.
- I can times by 4 twice to find out what times 8 is. This is because \qquad -
- Charlotte answered the question 27×3 and got the answer 6021 . I know the mistake she has made is \qquad .
- 30 is \qquad times bigger than 5 so \qquad \times \qquad $=$ \qquad _.
- How many different ways can you find the make 30 ? The method I used was \qquad -.
- 4 times 5 is 20 , so 20 divided by 5 is 4 .
- 3 times 5 is equal to 15.3 times 5 tens is equal to 15 tens. 15 tens is equal to 150 .
- factor times factor is equal to product.
- The order of the factors does not affect the product.

Year 3 - Shape

Year 2 Vocabulary	Year 3 Vocabulary
```vertex vertices faces edges equal internal angles regular irregular parallel perpendicular long thin short wide triangular fatter lines of symmetry reflection mirror line```	quarter turn   three-quarter turn   North, South, East, West   forward   right angle   parallel   perpendicular   quadrilaterals   Children should be able to follow instructions to draw shapes: 'mark the six vertex and join the points to draw the hexagon' 'complete the square'   'extend the sides'
Maths STEM sentences:   - This shape could be $\qquad$ because $\qquad$ . $\qquad$ is the odd one out because $\qquad$ .   - Vertical means $\qquad$   - The next shape in the pattern will be $\qquad$ because $\qquad$   - I know that a $\qquad$ has edges/faces/sides because $\qquad$   - $\qquad$ is less than a right angle because $\qquad$ .	
Previous, current and future learning objectives for properties of shape	
Previous, current and future learning objectives for position and direction	

Year 3 - Measures

Year 2 Vocabulary	Year 3 Vocabulary
midpoint   half way   estimate   compare	Perimeter

## Maths STEM sentences:

- $1 \mathrm{~m}=$ $\qquad$ cm because $\qquad$
- $1 \mathrm{~cm}=$ $\qquad$ mm because $\qquad$ .
- $565 \mathrm{~cm}+10 \mathrm{~cm}$ $\qquad$ $565 \mathrm{~cm}-10 \mathrm{~cm}$. (longer than, shorter than, the same as, <, > or =)
- The $\qquad$ is $\qquad$ cm longer than the $\qquad$ .
- The next shapes was $\qquad$ .
- To find the perimeter, I $\qquad$ _
- The $\qquad$ shape has the longest perimeter because $\qquad$ .
- These 2 lines are parallel because they are always the same distance apart. They will never meet no matter how far we extend them.
- These 2 lines are perpendicular because they are at right angles to each other.


## Previous, current and future learning objectives for measures

## Year 3 - Fractions



## Year 3 - Statistics



## Year 4 - Place Value

Year 3 Vocabulary
Children should be able to reason about place value and say sentences such as:
'10 tens is equal to 1 hundred'
'18 tens is equal to 10 tens and 8 more tens'
'100 is 10 times the size of 10 '
exchange
expression
previous multiple (of $10 / 100$ )
next multiple
estimate
compare/ing

## Maths STEM sentences:

- When I partition the number $\qquad$ , there are $\qquad$ thousands, $\qquad$ hundred,
$\qquad$ tens and $\qquad$ ones.
- = $\qquad$ $+$ $\qquad$ $+$ $\qquad$ $+$ $\qquad$
- If I added one more ___ (thousand/hundred/ten/one) the number would become $\qquad$
- ___ is closest to 2500 because $\qquad$ _.
- I know tha $\qquad$ is ten/hundred/thousand more than $\qquad$ The $\qquad$ column changes.
- I have ordered numbers this way because $\qquad$ .
- I know the next 3 numbers in the sequence would be $\qquad$ -.
- There is no zero in roman numerals because $\qquad$
$\qquad$ column.
$\qquad$ we look at the

Year 4 Vocabulary
Children should reason about place value, as in year 3, now extending to thousands.
Children should build on their learning from year 3 to find the previous and next multiple of a thousand.

## round/ed /ing

closest multiple
data
structure ('describe the structure' in relation to representations)

- $\qquad$ is between $\qquad$ and $\qquad$ but rounds to $\qquad$ .
- Rounding to the nearest $\qquad$ is similar to rounding to the nearest $\qquad$ because
$\qquad$ . Rounding to the nearest $\qquad$ is different to rounding to the nearest
$\qquad$ because $\qquad$ _.
- Counting in 1000's is similar/different to counting in 1's because $\qquad$ _.
- A negative number is $\qquad$ _.
- I know $\qquad$ (digits) can also be written as $\qquad$ (words).
- 10 hundreds is equal to 1 thousand.
- 18 hundreds is equal to 10 hundreds and 8 more hundreds. 10 hundreds is equal to 1,000 . So 18 hundreds is equal to 1,000 and 8 more hundreds, which is 1,800 .
- 1000 is 10 times the size of $100.1,800$ is 10 times the size of 180 .
- The previous multiple of 100 is $\qquad$ The next multiple of 100 is $\qquad$ _.
- The previous multiple of 1000 is $\qquad$ . The next multiple of 1000 is $\qquad$ -.


## Year 4 - Addition

Mental calculations	Year 3   Add and subtract numbers   mentally, including:   *a three-digit number and   ones   *a three-digit number and   tens   *a three-digit number and   hundreds		Year 5
	Add and subtract numbers   with up to three digits, using   formal written methods of   columnar addition and   subtraction.	Add and subtract numbers   with up to 4 digits using the   formal written methods of   columnar addition and   subtraction where   appropriate.	Add and subtract whole   numbers with more than 4   digits, including using formal   written methods (columnar   addition and subtraction).
Written calculations			
Previous, currentand future learning objectives for addition			


	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	$\begin{array}{\|c} \hline \begin{array}{c} \text { Models, } \\ \text { Images } \\ \text { and } \\ \text { resources } \end{array} \\ \hline \end{array}$
$\begin{array}{\|c\|} \hline \text { Year } \\ 4 \end{array}$	Practise mental methods with increasingly large numbers to aid fluency Add numbers mentally, including: A 3-digit number and hundreds   A 4-digit number and thousands   Add any pair of twodigit numbers, including crossing the tens and 100 houndary, e.g. $47+$ 58   add a near multiple of 10 , e.g. $45+39$ $\begin{gathered} 45+39=84 \\ 45+46-1 \\ 85-1=84 \end{gathered}$   Add near doubles of two-digit numbers, e.g. $38+37$	Use of place value counters to add $\underline{4}$ digit numbers and also money too.	Use of place value grid.	4-digit numbers and decimals - same number of digits.   Money up to 4 digits $\begin{array}{r} € 38.25 \\ +£ 27.46 \\ \hline € 65.71 \\ \hline \end{array}$	Add   Sum   More than   Total   Altogether   Plus   Partition into thousands, hundreds, tens and ones   Count on   Carry/Bridge ten   Carry/Bridge   100   Two digit   three digit   Four digit   Crossing tens boundary	100   square   Number lines   Number tracks   Place   Value   Counters   Base ten   (Dienes).   Arrow   Cards


  Understand addition as inverse of subtraction.				Inverse

## Year 4 - Addition

Year 3 Vocabulary	Year 4 Vocabulary
Complements to 100   Columnar addition	See previous year groups

## Maths STEM sentences:

- Write a story for the calculation $5000+4000=9000$.
- Always, sometimes, never? When you add hundreds to a number it affects the thousands column.
- $452+4$ thousand $=$ $\qquad$ _
is greater than/less than/</>/= $\qquad$
- I know that when I add a bigger number it $\qquad$ .
- I know $\qquad$ could be the right/wrong answer because $\qquad$ .
- I know the inverse of addition is $\qquad$ because $\qquad$ _.
- I can exchange 10 ones for 1 ten because $\qquad$
$\qquad$
- I can exchange 10 tens for 1 hundred because
- I can exchange 10 hundreds for 1 thousand because $\qquad$
- 8 plus 6 is equal to 14 , so 8 hundreds plus 6 hundreds is equal to 14 hundreds. 14 hundred is equal to 1,400 .


## Year 4 - Subtraction

|  | Year 3 | Year 4 | Year 5 |
| :--- | :--- | :--- | :--- | \left\lvert\, | Mental calculations | Add and subtract numbers <br> mentally, including: <br> *a three-digit number and <br> ones <br> *a three-digit number and <br> tens <br> *a three-digit number and <br> hundreds |
| :--- | :--- |
|  | Add and subtract numbers <br> with up to three digits, using <br> formal written methods of <br> columnar addition and <br> subtraction | | Add and subtract numbers |
| :--- |
| with up to 4 digits using the |
| formal written methods of |
| columnar addition and |
| subtraction where |
| appropriate |$\quad$| Add and subtract whole |
| :--- |
| numbers with more than 4 |
| digits, including using formal |
| written methods (columnar |
| addition and subtraction) |\right.

Previous, current and future learning objectives for subtraction

Year 4 Subtraction

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
$\begin{gathered} \text { Year } \\ 4 \end{gathered}$	Practise mental methods with increasingly large numbers to aid fluency   Subtract any pair of two-digit and threedigit numbers, including crossing the 10 and 100 boundary, e.g. 58 23   Count on and back in 10s from any number   Subtract a near multiple of 10, e.g. 84-29   Understand subtraction as inverse of addition	Subtracting 4 digit numbers crossing tens and hundreds   See Y 3 guidance for 3 digit numbers - it is the same principle.   Subtracting with money up to 4 digits using decimals   Use with real money to show how to find differences	Subtracting $\underline{4}$ digit numbers crossing tens and hundreds   See Y 3 guidance for 3 digit numbers - it is the same principle. notes and show the exchange.	Subtracting 4 digit   numbers crossing tens and hundreds   See Y 3 guidance for 3 digit numbers - it is the same principle.   Subtracting with money up to 4 digits using decimals	Subtraction   Partition into thousands, hundreds, tens and ones   Count on   Carry back   First   Then   Now   Difference   Find the difference   Decrease / reduced by	100   square   Number lines   Number tracks   Place   Value   Counters   Base ten   Arrow   Cards



## Year 4 - Subtraction

Year 3 Vocabulary	Year 4 Vocabulary
'5 ones minus 3 ones is equal to 2 ones'   Columnar subtraction   Minuend - subtrahend = difference   Missing part	See previous year groups.

## Maths STEM sentences:

- Write a story for the calculation $5000+4000=9000$.
- Always, sometimes, never? When you add hundreds to a number it affects the thousands column.
- $452+4$ thousand $=$ $\qquad$ -
- is greater than/less than/</>/= $\qquad$
- I know that when I subtract a smaller number it $\qquad$ .
- I know $\qquad$ could be the right/wrong answer because $\qquad$ .
- I know the inverse of addition is $\qquad$ because $\qquad$ -.
- I can exchange 10 ones for 1 ten because $\qquad$
- I can exchange 10 tens for 1 hundred because $\qquad$
- I can exchange 10 hundreds for 1 thousand because $\qquad$ _
- 8 plus 6 is equal to 14 , so 8 hundreds plus 6 hundreds is equal to 14 hundreds. 14 hundred is equal to 1,400 .

Year 4 - Multiplication

Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods(appears also in Written Methods).
Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods).

Year 4
Count in multiples of 6, 7, 9, 25 and 1000
Recall multiplication and division facts for multiplication tables up to $12 \times 12$

Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.

Multiply two-digit and three-digit numbers by a one-digit number using formal written layout.

Year 5
Count forwards or backwards in steps of powers of 10 for any given number up to 1000 000 (copied from Number and Place Value).

Multiply and divide numbers mentally drawing upon known facts.

Multiply numbers up to 4 digits by a one-or two-digit number using a formal written method, including long multiplication for twodigit numbers.

Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.

## Previous, current and future learning objectives for multiplication

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
$\begin{gathered} \text { Year } \\ 4 \end{gathered}$	Recall and practise multiplication facts for tables up to $12 \times$ 12 to aid fluency.   Use place value, known and derived facts to multiply mentally, including multiplying by 0 and 1 TU by 4 or 8 , eg, 26 $\times 4$ by doubling three numbers together two digit by a unit_ eg $17 \times 3$ numbers to 1000 by 10 and 100 (wholenumber answers) eg $325 \times 10,42 \times 100$   Extend mental methods to HTU to derive facts e.g. 200 $\times 3=600$ into $600 \div$ $3=200$   Recognise and use factor pairs e.g. give the factor pair associated with a multiplication fact, (if	Consolidate 3, 4, 8 times table See Y3 guidance - same principle   Learn the remaining tables to $\times 12$   See. Y2 examples showing concrete groups and arrays as they hold the same principles   Multiply 2 digit by one digit   $24 \times 3$ - Use Dienes or counters	Consolidate 3, 4, 8 times table See Y3 guidance - same principle   Learn the remaining tables to $\times 12$   See. Y2 examples showing pictorial groups and arrays as they hold the same principles   Multiply 2 digit by one digit   $24 \times 3$ - Draw it   Make connections $\times 10 \times 100$   The counters can be drawn also Using	Consolidate 3, 4, 8 times table See Y3 guidance - same principle   Learn the remaining tables to x 12   See Y3 guidance - same principle   Multiply 2 digit by one digit   Make connections $\times 10 \times 100$ $\begin{aligned} & 12 \times 10=120 \\ & 12 \times 100=1200 \end{aligned}$	Lots of   Groups of   Times   Repeated addition   Double   Sets   Groups,   Pairs   Array   symbol $x$   factor   product   multiple   ten times   the size   hundred   times the size	100 square   Number lines   Number tracks   Tens Frame   Numicon   Place Value Counters.   Base ten (Diennes).   Arrow Cards   Gattegne chart   Place Value Grid



## Year 4 - Multiplication



## Year 4 - Division

	Year 3	Year 4	Year 5
Multiplication and division facts	Count from 0 in multiples of 4, 8, 50 and 100.   Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables.	Count in multiples of $6,7,9,25$ and 1000.   Recall multiplication and division facts for multiplication tables up to $12 \times 12$.	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value).
Mental calculations	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods(appears also in Written Methods).	Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.	Multiply and divide numbers mentally drawing upon known facts.
Written calculations	Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods).	Multiply two-digit and three-digit numbers by a one-digit number using formal written layout.	Multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers.   Divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders appropriately for the context.

Previous, current and future learning objectives for division


three-digit multiples of 10 to 500 e.g. $760 \div 2$	all times table facts and including reminders Year 5-4-digit number divided by 1-digit (Short division) using all times table facts and including reminders $\left.\begin{array}{c} 376 \div 3=122 r 1 \\ 3 \longdiv { 3 6 } 2 \\ 36 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right)$		Year 5 to also interpret that remainder as a fraction or simple decimal (if known decimal fact). $\begin{aligned} & 4 \longdiv { 2 3 3 0 , 1 } \\ & 9321 \\ & 9321 \div 4=2330.1 \\ &=2330 \frac{1}{4} \\ &=2330.25 \end{aligned}$	a tenth or hundredth of the size   Fraction   Decimals	

Year 4 - Division

Year 3 Vocabulary	Year 4 Vocabulary
divided by	dividend   divisor   quotient   remainder

## Maths STEM sentences:

- There are $\qquad$ equal groups with $\qquad$ in each group.
- I know the total is $\qquad$ because $\qquad$ .
- _-x $\qquad$ $=$ $\div$ $\qquad$ Proveit.
- _r $^{\mathrm{x}}$ $\qquad$ $=\quad \mathrm{x}$ $\qquad$ Proveit.
- $\quad 7$ groups of $\underline{8}$ go into 56 .
- I know that when I times by 4, I need to $\qquad$ to times by 8 .
- I know the inverse of multiplication is $\qquad$ because $\qquad$ .
- I know the rule to multiplying/divide by $10 / 100$ is $\qquad$ .
- How many different ways can you find the make 30 ? The method I used was $\qquad$ .
- I know I will produce a greater number if I multiply by 100 rather than 10 because $\qquad$ .
- I know that zero means $\qquad$ _.
- I know that grouping/sharing mean $\qquad$ My example is $\qquad$ .
- ___ is a factor of $\qquad$ _.
- If the dividend is a multiple of the divisor there is no remainder. If the dividend is not a multiple of the divisor, there is a remainder. The remainder is always less than the divisor.
- If we swap the values of the divisor and quotient, the dividend remains the same.

Year 4 - Money

Year 3 Vocabulary	Year 3 Vocabulary
No specific vocabulary -ensure use of relevant vocabulary for   addition, subtraction, multiplication and division is applied.	No specific vocabulary -ensure use of relevant vocabulary for   addition, subtraction, multiplication and division is applied.

## Maths STEM sentences:

- I know p means $\qquad$ -.
- $£$ $\qquad$ p. Convince me.
- The lowest/greatest total that can be made is $\qquad$ .
- There are f $\qquad$ and $\qquad$ p.
- IfIspend $\qquad$ I will get $\qquad$ change because $\qquad$ .


## Previous, current and future learning objectives for addition and subtraction

## Previous, current and future learning objectives for multiplication and division

Year 4 - Shape

Year 3 Vocabulary	Year 4 Vocabulary
quarter turn   three-quarter turn	polygon   translate/translated/translation   xaxis y axis   co-ordinates   North, South, East, West   forward   right angle   parallel   perpendicular   quadrilaterals   Children should be able to follow instructions to draw shapes:   'mark the six vertex and join the points to draw the hexagon'   'complete the square'   'extend the sides

## Maths STEM sentences:

- This shape could be $\qquad$
$\qquad$
- ___ is the odd one out because $\qquad$
- Vertical means $\qquad$ -.
- The next shape in the pattern will be $\qquad$ because $\qquad$ -
- I know that a $\qquad$ has edges/faces/sides because $\qquad$ .
- 
- An angle is bigger/smaller than a $\qquad$ angle.

Previous, current and future learning objectives for properties of shape
Previous, current and future learning objectives for position and direction

Year 3 Vocabulary	Year 4 Vocabulary
Perimeter   Volume   Capacity	Kilometre rectilinear shapes
Maths STEM sentences:   - $1 \mathrm{~m}=$ $\qquad$ cm because $\qquad$   - $1 \mathrm{~cm}=$ $\qquad$ mm because $\qquad$   - $565 \mathrm{~cm}+10 \mathrm{~cm}$ $\qquad$ $565 \mathrm{~cm}-10 \mathrm{~cm}$. (longer than, shorter than, the same as, $<,>$ or $=$ )   - The $\qquad$ is $\qquad$ cm longer than the $\qquad$ -   - The next shapes were $\qquad$ .   - To find the perimeter/area, I $\qquad$   - The $\qquad$ shape has the longest perimeter because $\qquad$ .   - The area of the shape is $\qquad$ squared centimetres or $\qquad$ $\mathrm{cm}^{2}$.   - This is a regular polygon, because all of the sides are the same length, and all of the interior angles are equal.	
Previous, current and future learning objectives for measures	

Year 4 - Fractions

## Year 3 Vocabulary

Children should be able to use this precise language when referring to shape, measure and groups of things: 'The whole is divided into 3 equal parts. 1 of these parts is shaded'
fraction bar
denominator
numerator

## $\frac{5}{8}$ is five one eighths

This language should al so be modelled when calculating with fractions.
diagram
highlighted/shaded
set (in the context of groups or arrays)
find (one tenth of 40)
interval (in the context of a number line)
position
points ('label the points on this number line')

## Maths STEM sentences:

- I know a whole has ___ parts. Each part is worth a $\qquad$ This is the sameas $1 / 8$.
- Iknow that $\qquad$ of the shape $\qquad$ .
- I know that I have found a fifth of something because $\qquad$
$\qquad$
- I know that the fraction __ has been shaded because
- Iknow hundredths are shaded because $\qquad$ /tenths.
- I know that I need $\qquad$ hundredths to $\qquad$ hundredths $\qquad$ is always. (denominator)
- IfI startat $\qquad$ hundredths,
hundredth $\qquad$ will be next.
- I know that the ___ hundredths comes between ns_.
$\qquad$
- I know equivalent means .


## Previous, current and future learning objectives for fractions

Mixed number
Equivalent
Improper fraction

- The numerator/denominator is $\qquad$ and means $\qquad$
- I know that a decimals is $\qquad$ in centimetres.
- I know that 0.1 metres is ___ in centimetres.
- I know that a zero is important when dividing a number by 10 because
$\qquad$
- When I partition the number $\qquad$ there are $\qquad$ ones, $\qquad$ tenths, and hundredths
- $\qquad$
$\qquad$ $+$ $\qquad$ $+\quad$ ( (with decimal places).
- I know the value of the in the number $\qquad$

- When the numerator is a multiple of the denominator, the fraction is equivalent to a whole number.

Year 4 - Statistics

Year 3 Vocabulary	Year 4 Vocabulary
No specific vocabulary - see previous year groups	No specific vocabulary -see previous year groups

## Maths STEM sentemces:

- Idrew $\qquad$ pictures because $\qquad$ .
- I know each picture is worth $\qquad$ because $\qquad$ .
- I know the greatest/smallest amount shown on the pictogram is $\qquad$ because $\qquad$ .


## Previous, current and future year groups learning objectives for Statistics

Year 5 - Place Value

Year 4 Vocabulary
Children should reason about place value, as in year 3, now extending to
thousands.
Children should build on their learning from year 3 to find the previous and next
multiple of a thousand.
round/ed /ing
closest multiple
data
structure ('describe the structure' in relation to representations)

## Maths STEM sentences:

- When I partition the number $\qquad$ there are $\qquad$ hundred thousands, $\qquad$ ten thousands, $\qquad$ thousands, $\qquad$ hundred, $\qquad$ tens and $\qquad$ ones.
- $\qquad$ $+$ _+
$\qquad$ thousand/hundred/ten/one) the number would become $\qquad$ -.
- ___ is closest to 2500 because $\qquad$ _.
- I know that $\qquad$ is ten/hundred/thousand more than $\qquad$ The $\qquad$ column changes
- I have ordered numbers this way because $\qquad$ _.
- I know the next 3 numbers in the sequence would be $\qquad$ .
- There is no zero in roman numerals because $\qquad$ the $\qquad$ column.
- When rounding to the nearest $\qquad$ we look at the Year 5 Vocabulary

Children should reason about place value, as in year 4, now extending to ten thousands and thousands
Children should build on their learning from year 3 to find the previous and next multiple of a ten thousand and hundred thousand, also the previous multiple of 0.1 and 0.01 .

Express hundredths in words, e.g. Three hundredths is equal to zero-point-zerothree.

- Rounding to the nearest $\qquad$ is similar to rounding to the nearest $\qquad$ because $\qquad$ . Rounding to the nearest $\qquad$ is different to rounding to the nearest $\qquad$ because $\qquad$ —.
- A negative number is $\qquad$ .
- I know $\qquad$ (digits) can also be written as $\qquad$ (words).
- 1 is 10 times the size of one-tenth. One-tenth is 10 times the size of onehundredth. 1 is 100 times the size of one-hundredth.
- 10 tenths is equal to 1 one. 10 hundredths is equal to 1 tenth. 100 hundredths is equal to 1 one.
- 18 hundredths is equal to 10 hundredths and 8 more hundredths. 10 hundredths is equal to 1 tenth. So 18 hundredths is equal to 1 tenth and 8 more hundredths, which is 0.18 .
- a is 0.14 because it is 1 hundredth less than the midpoint of 0.1 and 0.2 , which is 0.15 . b is 0.41 because it is 1 hundredth more than 0.4 .


## Year 5 - Addition

	Year 4	Year 5	Year 6
Mental calculations		Add and subtract numbers mentally with increasingly large numbers perform mental calculations, including with mixed operations and large numbers.	Add and subtract numbers mentally with increasingly large numbers perform mental calculations, including with mixed operations and large numbers.
Written calculations	Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate.	Add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction).	
Previous, current and future learning objectives for addition			


	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
Year   5   And   Year   6	Y5   Add numbers mentally with increasingly large numbers to aid fluency eq 12462 + 2 $300=14762$   Use rounding to check answers and determine, levels of accuracy   Add a pair of two or threedigit   multiples of 10 , e.g. $30+80$, $35+36$ and $350+360$	Use of place value counters to add up to 6 digits.	Use of place value grid. See Y4 for some examples.	Varied sized numbers up to millions or 3DP added using compact method. Includes measures and money	Add   Sum   More than   Total   Altogether   Plus   Partition   into   hundred   thousands,   ten   thousands, thousands, hundreds, tens and ones Count on   Carry ten Carry 100 Carry 1000 Carry 10000 Carry 100000	100 square   Number lines   Number tracks   Place Value Counters.   Base ten (Dienues).   Arrow Cards


number or four-digit number, e.g. $235+198$   Add pairs of decimal fractions each with units and tenths, e.g. $5.7+2.5,6.3+4.8$ Y6   Calculate mentally with increasingly large numbers and more complex calculations. Including Counting on in multiples   MA2a: Counting On   $43,826+30,000=73,826$   +30,000   Addition facts for multiples of 10 to 1000 and decimal numbers with one decimal place,   e.g.			Decimals - same and different number of digits $\begin{gathered} \text { A7 j: Column Addition } \\ 73.4+5.67=79.07 \\ 73.4 \\ +5.67 \\ \underline{79.07} \end{gathered}$	Two digit three digit   Crossing tens boundary   Inverse   addend	

## Year 5 - Addition



Year 5 - Subtraction

	Year 4	Year 5	Year 6
Mental calculations		Add and subtract   numbers mentally with   increasingly large   numbers perform mental   calculations, including   with mixed operations   and large numbers.	Add and subtract   numbers mentally with   increasingly large   numbers perform mental   calculations, including   with mixed operations   and large numbers.
Written calculations	Add and subtract   numbers with up to 4   digits using the formal   written methods of   columnar addition and   subtraction where   appropriate.	Add and subtract whole   numbers with more than   4 digits, including using   formal written methods   (columnar addition and   subtraction).	

Previous, current and future learning objectives for subtraction

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
Year   5   And   Year   6	Subtract numbers with increasingly large numbers to aid fluency e. $12462-2300=$ 10162   Use rounding to check answers and determine, levels of accuracy   Subtract a pair of two or three-digit multiples of 10, e.g. $80-30,45-36$ and $4.50-360$   Subtract a near multiple of 10 or 100 from any two-digit or three-digit number, e.g. 235-199   Subtract pairs of decimal fractions each with ones and tenths,   e.g. 5.7-2.5, 6.3-4.8	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency   Please see the Year 3 and Year 4 examples as they have the same principles	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency   Please see the Year 3 and Year 4 examples as they have the same principles	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency   Please see the Year 3 and Year 4 examples as they have the same principles Negative numbers $7-9=-2$   There is a negative difference of 2   The difference between 9 and -3.	Subtraction   Partition into millions, hundred thousands, ten thousands, thousands, hundreds, tens and ones   Empty number line   Count on   Carry back   First, Then Now   Difference   Find the difference Decrease / reduced by Negative	100 square   Number lines   Number tracks   Place Value Count   Base ten.   Arrow Cards



## Year 5 - Subtraction

Year 4 Vocabulary	Year 5 Vocabulary
See previous year groups	See previous year groups

## Maths STEM sentences:

- Write a story for the calculation $5000+4000=9000$.
- Always, sometimes, never? When you add hundreds to a number it affects the thousands column.
- $452+4$ thousand $=$ $\qquad$
- ___ is greater than/less than/</>/= $\qquad$
- I know that when I subtract a smaller number it $\qquad$ .
- I know $\qquad$ could be the right/wrong answer because $\qquad$ .
- I know the inverse of addition is $\qquad$ because $\qquad$ .
- I can exchange 10 ones for 1 ten because $\qquad$
- I can exchange 10 tens for 1 hundred because $\qquad$
- I can exchange 10 hundreds for 1 thousand because $\qquad$
- 8 plus 6 is equal to 14 , so 8 hundreds plus 6 hundreds is equal to 14 hundreds. 14 hundred is equal to 1,400 .

Year 5 - Multiplication

	Year 4	Year 5	Year 6
Multiplication and division facts	Count in multiples of $6,7,9,25$ and 1000   Recall multiplication and division facts for multiplication tables up to $12 \times 12$	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
Mental calculations	Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	Multiply and divide numbers mentally drawing upon known facts	Perform mental calculations, including with mixed operations and large numbers.
Written calculations	Multiply two-digit and three-digit numbers by a one-digit number using formal written layout	Multiply numbers up to 4 digits by a one-or two-digit number using a formal written method, including long multiplication for two-digit numbers   Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

Previous, current and future learning objectives for multiplication

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
$\begin{gathered} \hline \text { Year } \\ 5 \\ \text { and } \\ 6 \end{gathered}$	Multiply TU X U mentally using known facts for all multiplication tables to 12 x 12 numbers   Identify   multiples and factors, including finding all factor pairs for numbers to 100 , e.g. 30 has the factor pairs $1 \times$ $30,2 \times 15,3 \times 10$ and $5 \times 6$   Establish whether a number up to 100 is prime and recall prime numbers up to 19   Recognise and use square and cube numbers, and relevant notation.	Multiply up to 4 digits by a one- number   $2214 \times 4$ - use counters   Multiply up to 4 digits by a two- number   If children are working at this level - moving straight to a formal method is the best approach.	Multiply up to 4 digits by a one- number   $2214 \times 4$ - can draw in a place value grid   Multiply up to 4 digits by a two- number   If children are working at this level - moving straight to a formal method is the best approach.	Multiply up to 4 digits by a one- number   Year 5   Start with expanded with brackets:   Then move on to compact method showing bridging: $\begin{array}{r} \text { ThHTU ThHTU } \\ 2214 \\ \times 384 \\ \times 856 \\ \hline 88564 \end{array}$	As above factor product multiple ten times the size   hundred times the size   a tenth the size   a   hundredth the size   scaling   adjacent multiples   prime square cubed	100 square   Number lines   Number tracks   Tens Frame   Numicon   Place Value Counters   Base ten (Diennes).   Arrow Cards   Gattegno chart   Place Value Grid

```
Multiply by 25 or 50, e.g. 48\times25,32\times
50
Multiply whole numbers decimals by
10,100 and 1000 e.g. 4.3 < 10,0.75
```

$\times 100$

Multiply pairs of multiples of 10, e.g. 60 $\times 30$, and a multiple of 100 by a single digit number, e.g. $900 \times 8$

$$
\begin{aligned}
30 \times 80 & =3 \times 8 \times 10 \times 10 \\
& =3 \times 8 \times 100 \\
& =2,400
\end{aligned}
$$

Use divisibility tests to identify multiples of $3,6,98$ and revise 2,4 10 and 5


## Year 6

Multiply two-digit decimals such as 0.8 $\times 7$ and pairs of multiples of 10 and 100 , e.g. $50 \times 30,600 \times 20$


## Year 5 - Multiplication

Year 4 Vocabulary	Year 5 Vocabulary
Children should beable to use this vocabulary to reason:   'If I multiply the dividend by 100, and the divisor by 100 the quotient remains the same.' 'If we swap the values of the divisor and the quotient, the dividend remains the same.'   Children should beable to reason aboutcalculation:   'Explain what mistake $x$ has made.'	'Factor' and 'Product' with the additional focus of multiplying by 100, e.g. 'If I make one factor one hundred times larger, I make the product one hundred times larger.'   ' 8 , made one-tenth of the size, is 0.8 '   ' 8 divided by 10 is equal to 0.8 '   'First we had 8 ones. Now we have 8 tenths'   'Term' - e.g. 'x 100 ' $\div 100^{\prime}$   Short division   Common factors   Common multiples   Quantity   Combined
Maths STEM sentences:   There are $\qquad$ equal groups with $\qquad$ in each group.   - I know the total is $\qquad$ because $\qquad$ -. $\qquad$ x $\qquad$ = $\qquad$ x $\qquad$ . Prove it.   I know that when I times by 4, I need to $\qquad$ to times by 8 .   I know inverse means $\qquad$ .   I know the ruleto multiplying/divide by 10/100/1000 is $\qquad$ .   I know I will producea greater number if I multiply by 100 rather than 10 because   I know that zero means $\qquad$ -.   I know that grouping/sharing mean $\qquad$ . My example is $\qquad$ . $\qquad$ is a factor of $\qquad$ .   I know a common factor/multiple/prime number is $\qquad$ and an example of this is I know to square/cube a number you need to $\qquad$ and this can be written as $\qquad$ IfI make the dividend one-hundredth times the size and the divisor one-hundredth size and keep the divisor the same, I must make the quotient one-hundredth times 0.8 , made 10 times the size, is 8.0 .8 multiplied by 10 is equal to 8 . First we had 8 t	the size, the quotient remains the same. If I make the dividend one-hundredth times the ze.   Now we have 8 ones.


	Year 4	Year 5	Year 6
Multiplication and division facts	Count in multiples of $6,7,9,25$ and 1000   Recall multiplication and division facts for multiplication tables up to $12 \times 12$	Count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 (copied from Number and Place Value)	
Mental calculations	Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	Multiply and divide numbers mentally drawing upon known facts	Perform mental calculations, including with mixed operations and large numbers.
Written calculations	Multiply two-digit and three-digit numbers by a one-digit number using formal written layout	Multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers   Divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders appropriately for the context	Divide numbers up to 4-digits by a twodigit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

## Previous, current and future learning objectives for division



three-digit multiples of 10 to 500 e.g. $760 \div 2$	all times table facts and including reminders Year 5-4-digit number divided by 1-digit (Short division) using all times table facts and including reminders $\left.\begin{array}{c} 376 \div 3=122 r 1 \\ 3 \longdiv { 3 6 } 2 \\ 36 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right)$		Year 5 to also interpret that remainder as a fraction or simple decimal (if known decimal fact). $\begin{aligned} & 4 \longdiv { 2 3 3 0 , 1 } \\ & 9321 \\ & 9321 \div 4=2330.1 \\ &=2330 \frac{1}{4} \\ &=2330.25 \end{aligned}$	a tenth or hundredth of the size   Fraction   Decimals	

Year 5 - Division

Year 4 Vocabulary	Year 5 Vocabulary
dividend divisor quotient remainder	'Factor' and 'Product' with the additional focus of multiplying by 100, e.g. 'IfI make one factor one hundred times larger, I make the product one hundred times larger.'   ' 8 , made one-tenth of the size, is 0.8 '   ' 8 divided by 10 is equal to 0.8 '   'First we had 8 ones. Now we have 8 tenths'   'Term' - e.g. 'x $100^{\prime} \times 100^{\prime}$   Short division   Common factors   Common multiples   Quantity   Combined

## Maths STEM sentences:

- There are ___ equal groups with___ in each group.
- I know the total is $\qquad$ because
$\qquad$
$\qquad$ Prove it.
-     - $x$ $\qquad$ $=$ $\qquad$ $x$ Proveit.
- 7 groups of 8 go into 56 .
- I know that when I times by 4, I need to $\qquad$ to times by 8 .
- I know the inverse of multiplication is because $\qquad$
$\qquad$
- I know the rule to multiplying/divide by $10 / 100$ is $\qquad$ .
- How many different ways can you find the make 30 ? The method I used was $\qquad$ . $\qquad$ -.
- I know I will produce a greater number if I multiply by 100 ratherthan 10 becaus
$\qquad$
- I know that zero means -
- I know that grouping/sharing mean $\qquad$ My example is $\qquad$ _.
- is a factor of $\qquad$
- If the dividend is a multiple of the divisor there is no remainder. If the dividend is not a multiple of the divisor, there is a remainder. The remainder is always less than the divisor.
- If we swap the values of the divisor and quotient, the dividend remains the same.

Year 5 - Shape
Year 4 Vocabulary
polygon
translate/translated/ translation
x axis y axis
co-ordinates
interior angles
'drawn to scale/ not drawn to scale'
symmetrical pattern

Year 5 Vocabulary
polygon
Acute angle
Obtuse angle
Reflex angle
Area
interior angles
'drawn to scale/ not drawn to scale'
symmetrical pattern

## Maths STEM sentences:

- This shape could be $\qquad$ because $\qquad$ .
- ___ is the odd one out because $\qquad$ —.
- Vertical/reflect means means $\qquad$ ${ }^{\circ}$ $\qquad$ because $\qquad$ .
- I know that a ___ has edges/faces/sides because $\qquad$ .
- ___ angle is bigger/smaller than a $\qquad$ angle.
- An $\qquad$ angle is $\qquad$ degrees.


## Previous, current and future learning objectives for properties of shape

Previous, current and future learning objectives for position and direction

## Year 5 - Measures

Year 4 Vocabulary	Year 5 Vocabulary
Kilometre rectilinearshapes	metricunits   common imperial units   Inches   Pounds   pints
Maths STEM sentences:   - $1 \mathrm{~m}=$ $\qquad$ cm because $\qquad$   - $1 \mathrm{~cm}=$ $\qquad$ mm because $\qquad$   - $565 \mathrm{~cm}+10 \mathrm{~cm}$ $\qquad$ $565 \mathrm{~cm}-10 \mathrm{~cm}$. (longer than, shorter than, the same as, <,   - The $\qquad$ is $\qquad$ cm longer than the $\qquad$ .   - The nextshapeswere $\qquad$ -   - To find the perimeter/area, I $\qquad$ -.   - I know the formula for area is $\qquad$ x $\qquad$ .   - I know that if I have a compound shape I need to $\qquad$ to work out the area.   - The $\qquad$ shape has the longest perimeter because $\qquad$ .   - The area of the shape is $\qquad$ squared centimetres or $\qquad$ $\mathrm{cm}^{2}$.	or =)

Previous, current and future learning objectives for measures

## Year 5 - Fractions

Year 5 Vocabulary
Previous whole number, next whole number
Mixed number
Equivalent
Improper fraction
'10 tenths is equal to 1 one.'
' 1 is 10 times the size the one-tenth.'
'One-tenth is 10 times the size of one-hundredth.'
' 1 is 100 times the size of one-hundredth'
'10 hundredths is equal to 1 tenth.'
'100 hundredths is equal to 1 one.'
Hundredth more/less
Midpoint (e.g. a is 0.14 becauseit is 1 hundredths less than the midpoint of 0.1 and 0.2 ,
which is 0.15.')
Unit fraction
Decimal fraction
'Chain of equivalent fractions',

- I know that a decimal is $\qquad$ in centimetres.
- I know that 0.1 metres is $\qquad$
- I know that a zero is important when dividing a number by 10 becaus $\qquad$
$\qquad$
- When I partition the number $\qquad$ there are $\qquad$ ones, $\qquad$ tenths, and $\qquad$ hundredths
$\qquad$
$\qquad$ $+$ $\qquad$ $+$ $\qquad$ $+$ $\qquad$ (with decimal places)
- I know the value of the ___ in the number $\qquad$ . I can provide an example $\qquad$ . know an improper fraction/mixed $n$
$\qquad$ .
- I know you need $\qquad$ to simplify fractions/find equivalent fractions.
- I know to add/subtract/multiply a fraction, I have to $\qquad$
$\qquad$ and multiply by
- To find a fraction of an amount, I know you need to divide by
- I know that to convert a decimal to a percentage I $\qquad$
- ___ (percentage) = $\qquad$ (fraction) $=$ $\qquad$ decimal)
$\qquad$ ___ (decim
- Percent means $\qquad$

Previous, current and future learning objectives for fractions

Year 5 - Statistics

Year 4 Vocabulary	Year 5 Vocabulary
No specific vocabulary -see previous year groups.	No specific vocabulary -see previous year groups.

## Maths STEM sentemces:

- I know the $\qquad$ axis is $\qquad$ -
$\qquad$ I worked this out by $\qquad$ .
- I know the scale goes up in _. . . worked that a column/row in a timetable shows $\qquad$ .


## Previous, current and future year groups learning objectives for Statistics

Year 6 - Place Value

## Year 6 Vocabulary

Children should reason about place value, as in year 5, now extending to ten hundred thousands and millions.
Intervals
Divisions
Numerals
Powers of ten
Ascending/ descending order
Sequence
Degree of accuracy
comparing

## Maths STEM sentences:

- When I partition the number $\qquad$ , there are $\qquad$ millions, thousands, $\qquad$ hundre
$\qquad$ ten thousands $\qquad$ ones.
- = $\qquad$ $+$ $\qquad$ $+$ $\qquad$ tens and $\qquad$ ones.
- IfI added one more $\qquad$ (thousand/hundred/ten/one) the number would become $\qquad$ -.
is closest to 2500 because $\qquad$ _.
- I know that $\qquad$ is ten/hundred/thousand more than $\qquad$ -. The $\qquad$ column changes.
- I have ordered numbers this way because $\qquad$ .
- I know the next 3 numbers in the sequence would be $\qquad$ because $\qquad$ -.
- There is no zero in roman numerals because $\qquad$ .
- When rounding to the nearest $\qquad$ we look at the $\qquad$ column.
- ___ is between $\qquad$ and $\qquad$ but rounds to $\qquad$
- Rounding to the nearest $\qquad$ is similar to rounding to the nearest ___ because $\qquad$ . Rounding to the nearest $\qquad$ is different to rounding to the nearest $\qquad$ because $\qquad$
- A negative number is $\qquad$ .
- I know ___ (digits) can also be written as $\qquad$ (words).
- 10 hundred-thousands is equal to 1 million.
- $1,000,000$ is 10 times the size of $100,000.100,000$ is one-tenth times the size of 1,000,000.
- The previous multiple of 100,000 is $\qquad$ The next multiple of 100,000 is $\qquad$ .
- The previous multiple of 1 million is $\qquad$ million. The next multiple of 1 million is $\qquad$ million.
Use conventional notation for the priority of operations, including brackets, powers, roots and reciprocals
Real numbers
Rational numbers.

Year 6 - Addition

Mental calculations	Year 5   Add and subtract numbers   mentally with increasingly   large numbers perform   mental calculations,   including with mixed   operations and large   numbers.	Add and subtract   numbers mentally with   increasingly large   numbers perform mental   calculations, including   with mixed operations   and large numbers.	Year 7


	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
Year   5   And   Year   6	Y5   Add numbers mentally with increasingly large numbers to aid fluency eq 12462 + 2 $300=14762$   Use rounding to check answers and determine, levels of accuracy   Add a pair of two or threedigit   multiples of 10 , e.g. $30+80$, $35+36$ and $350+360$	Use of place value counters to add up to 6 digits.	Use of place value grid. See Y4 for some examples.	Varied sized numbers up to millions or 3DP added using compact method. Includes measures and money	Add   Sum   More than   Total   Altogether   Plus   Partition   into   hundred   thousands,   ten   thousands, thousands, hundreds, tens and ones Count on   Carry ten Carry 100 Carry 1000 Carry 10000 Carry 100000	100 square   Number lines   Number tracks   Place Value Counters.   Base ten (Dienues).   Arrow Cards


number or four-digit number, e.g. $235+198$   Add pairs of decimal fractions each with units and tenths, e.g. $5.7+2.5,6.3+4.8$ Y6   Calculate mentally with increasingly large numbers and more complex calculations. Including Counting on in multiples   MA2a: Counting On   $43,826+30,000=73,826$   +30,000   Addition facts for multiples of 10 to 1000 and decimal numbers with one decimal place,   e.g.			Decimals - same and different number of digits $\begin{gathered} \text { A7 j: Column Addition } \\ 73.4+5.67=79.07 \\ 73.4 \\ +5.67 \\ \underline{79.07} \end{gathered}$	Two digit three digit   Crossing tens boundary   Inverse   addend	

## Year 6 - Addition

Year 5 Vocabulary	Year 6 Vocabulary
See previous year groups.	See previous year groups.
Maths STEM sentences:	

- Write a story for the calculation $5000+4000=9000$.
- $452+4$ thousand $=$ $\qquad$ _
- ___ is greater than/less than/</>/= $\qquad$
- I know $\qquad$ could be the right/wrong answer because $\qquad$ .
- I know the inverse of addition is $\qquad$ because $\qquad$ _.
- I know that exchange means $\qquad$ .
- I can exchange 10 ones for 1 ten because $\qquad$
- I can exchange 10 tens for 1 hundred because $\qquad$
- I can exchange 10 hundreds for 1 thousand because $\qquad$
- I can exchange 10 thousands, etc...
- If one addend is increased and the other is decreased by the same amount, the sum stays the same.


## Year 6 - Subtraction

$\left.$	Mental calculations	Year 5	Year 6
numbers mentally with			
increasingly large			
numbers perform mental			
calculations, including			
with mixed operations			
and large numbers.			$\quad$
:---			
numbers mentally with			
increasingly large			
numbers perform mental			
calculations, including			
with mixed operations			
and large numbers.	$\quad \right\rvert\,$	Year	
:---			

Previous, current and future learning objectives for addition

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
Year   5   And   Year   6	Subtract numbers with increasingly large numbers to aid fluency e. $12462-2300=$ 10162   Use rounding to check answers and determine, levels of accuracy   Subtract a pair of two or three-digit multiples of 10, e.g. $80-30,45-36$ and $4.50-360$   Subtract a near multiple of 10 or 100 from any two-digit or three-digit number, e.g. 235-199   Subtract pairs of decimal fractions each with ones and tenths,   e.g. 5.7-2.5, 6.3-4.8	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency   Please see the Year 3 and Year 4 examples as they have the same principles	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency   Please see the Year 3 and Year 4 examples as they have the same principles	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency   Please see the Year 3 and Year 4 examples as they have the same principles Negative numbers $7-9=-2$   There is a negative difference of 2   The difference between 9 and -3.	Subtraction   Partition into millions, hundred thousands, ten thousands, thousands, hundreds, tens and ones   Empty number line   Count on   Carry back   First, Then Now   Difference   Find the difference Decrease / reduced by Negative	100 square   Number lines   Number tracks   Place Value Count   Base ten.   Arrow Cards



Year 5 Vocabulary	Year 6 Vocabulary
See previous year groups	See previous year groups

## Maths STEM sentences:

- $\quad$ i is greater than/less than/</>/= $\qquad$
- I know $\qquad$ could be the right/wrong answer because $\qquad$ .
- I know the inverse of addition is $\qquad$ because $\qquad$ _.
- I know that exchange means $\qquad$ -
- I can exchange 10 ones for 1 ten because $\qquad$
- I can exchange 10 tens for 1 hundred because $\qquad$
- I can exchange 10 hundreds for 1 thousand because $\qquad$
- I can exchange 10 thousands, etc...
- If one addend is increased and the other is decreased by the same amount, the sum stays the same.

Year 6 - Multiplication

	Year 5	Year 6	Year 7
Multiplication and division facts	Count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)		
Mental calculations	Multiply and divide numbers mentally drawing upon known facts	Perform mental calculations, including with mixed operations and large numbers.	
Written calculations	Multiply numbers up to 4 digits by a one-or two-digit number using a formal written method, including long multiplication for two-digit numbers   Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context.	Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.	

Previous, current and future learning objectives for multiplication

	Mental Strategies	Concrete	Pictorial	Abstract	Vocabulary	Models, Images and resources
$\begin{gathered} \hline \text { Year } \\ 5 \\ \text { and } \\ 6 \end{gathered}$	Multiply TU X U mentally using known facts for all multiplication tables to 12 x 12 numbers   Identify   multiples   and factors,   including finding   all factor pairs   for numbers   to 100 , e.g. 30 has the factor pairs $1 \times$ $30,2 \times 15,3 \times 10$ and $5 \times 6$   Establish whether a number up to 100 is prime and recall prime numbers up to 19   Recognise and use square and cube numbers, and relevant notation.	Multiply up to 4 digits by a one- number   $2214 \times 4$ - use counters   Multiply up to 4 digits by a two- number   If children are working at this level - moving straight to a formal method is the best approach.	Multiply up to 4 digits by a one- number   $2214 \times 4$ - can draw in a place value grid   Multiply up to 4 digits by a two- number   If children are working at this level - moving straight to a formal method is the best approach.	Multiply up to 4 digits by a one- number   Year 5   Start with expanded with brackets:   Then move on to compact method showing bridging:	As above   factor   product   multiple   ten times   the size   hundred   times the size   a tenth the size   a hundredth the size scaling adjacent multiples   prime square cubed	100 square   Number lines   Number tracks   Tens Frame   Numicon   Place Value Counters   Base ten (Dienues).   Arrow Cards   Gattegno chart   Place Value Grid



Year 6 - Multiplication

Year 5 Vocabulary	Year 6 Vocabulary
'Factor' and 'Product' with the additional focus of multiplying by 100, e.g. 'IfI make one factor one hundred times larger, I make the product one hundred times larger.'   ' 8 , made one-tenth of the size, is 0.8 '   ' 8 divided by 10 is equal to 0.8 '   'First we had 8 ones. Now we have 8 tenths'   'Term' - e.g. ‘x 100 ' $\div \div 100^{\prime}$   Short division   Common factors   Common multiples   Quantity   Combined	Emphasis on multiplicative and proportional structures:   Children should be able to reason using 1-to-many correspondence structures:   'For every 2 green beads, there are 3 yellow beads.'   'For every 1 cup of riceyou cook, you need 2 cups of water.'   Cubed.

## Maths STEM sentences:

- There are $\qquad$ equal groups with $\qquad$ in each group.
- I know the total is $\qquad$ because $\qquad$ .
-     - ${ }^{x}$ $\qquad$ $=$ $\qquad$ $\div$ . Proveit.
- $x^{x}=-\quad$. Proveit.
- I know that when I times by 4, I need to $\qquad$ to times by 8 .
- I know inverse means $\qquad$ _.
- I know the rule to multiplying/divide by $10 / 100 / 1000$ is $\qquad$ .
- I know I will produce a greater number if I multiply by 100 rather than 10 because $\qquad$ .
- I know that zero means $\qquad$ _.
- I know that grouping/sharing mean $\qquad$ My example is $\qquad$ .
- __ is a factor of $\qquad$ _.
- I know a common factor/multiple/prime number is $\qquad$ and an example of this is $\qquad$ .
- I know to square/cube a number you need to $\qquad$ and this can be written as $\qquad$ ly
- The relationship between 2 numbers can be expressed additively or multiplicatively.

	Year 5	Year 6	Year 7
Multiplication and division facts	Count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 (copied from Number and Place Value)		
Mental calculations	Multiply and divide numbers mentally drawing upon known facts	Perform mental calculations, including with mixed operations and large numbers.	
Written calculations	Multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers   Divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders appropriately for the context	Divide numbers up to 4-digits by a twodigit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	

[^1]


Year 6 - Division

Year 5 Vocabulary	Year 6 Vocabulary
'Factor' and 'Product' with the additional focus of multiplying by 100, e.g. 'If I make one factor one hundred times larger, I make the product one hundred times larger.'   ' 8 , made one-tenth of the size, is 0.8 '   ' 8 divided by 10 is equal to 0.8 '   'First we had 8 ones. Now we have 8 tenths'   'Term' - e.g. 'x 100 ' $\div 100^{\prime}$   Short division   Common factors   Common multiples   Quantity   Combined	Emphasis on multiplicative and proportional structures:   Children should be able to reason using 1-to-many correspondence structures:   'For every 2 green beads, there are 3 yellow beads.'   'For every 1 cup of rice you cook, you need 2 cups of water.' cubed

## Maths STEM sentences:

- There are equal groups with $\qquad$ in each group.
- I know the total is $\qquad$ because $\qquad$ .
- _ $\quad x$ $\qquad$ = $\qquad$ $-\stackrel{+}{x}$ $\qquad$

$\qquad$ to times by 8 .
- I know inverse means $\qquad$ _.
- I know the rule to multiplying/divide by 10/100/1000 is $\qquad$ -.
- I know I will produce a greater number if I multiply by 100 rather than 10 because $\qquad$
$\qquad$
- I know that zero means $\qquad$ -
- I know that grouping/sharing mean $\qquad$ . My example is $\qquad$ _.
- is a factor of $\qquad$ _.
- I know a common factor/multiple/prime number is $\qquad$ and an example of this is $\qquad$ .
- I know to square/cube a number you need to $\qquad$ and this can be written as $\qquad$ -
- The relationship between 2 numbers can be expressed additively or multiplicatively.


## Year 5 - Shape

Year 4 Vocabulary	Year 5 Vocabulary
polygon	Acute angle
translate/translated/translation	Obtuse angle   xaxis y axis   co-ordinates   interior angles   'drawn to scale/ not drawn to scale'   symmetrical pattern

## Maths STEM sentences:

- This shape could be __ because $\qquad$
- ___ is the odd one out because $\qquad$ .
- Vertical/reflect means means $\qquad$
$\qquad$ because $\qquad$ -
- The next shape in the pattern will be $\qquad$
$\qquad$ .
- Iknow that a $\qquad$ has edges/faces/sides because /sides because.
angle.
- An $\qquad$ angle is $\qquad$ degrees.


## Previous, current and future learning objectives for properties of shape

Previous, current and future learning objectives for position and direction

Year 5 - Measures

Year 4 Vocabulary	Year 5 Vocabulary
Kilometre   rectilinear shapes	metric units   common imperial units   Inches   Pounds   pints
Maths STEM sentences:   - $1 \mathrm{~m}=$ $\qquad$ cm because $\qquad$   - $1 \mathrm{~cm}=$ $\qquad$ mm because $\qquad$   - $565 \mathrm{~cm}+10 \mathrm{~cm}$ $\qquad$ $565 \mathrm{~cm}-10 \mathrm{~cm}$. (longer than, shorter than, the same as, $<,>$ or $=$ )   - The $\qquad$ is $\qquad$ cm longer than the $\qquad$ .   - The next shapes were $\qquad$ -   - To find the perimeter/area, I $\qquad$ .   - I know the formula for area is $\qquad$ x $\qquad$ .   - I know that if I have a compound shape I need to $\qquad$ to work out the area.   - The $\qquad$ shape has the longest perimeter because $\qquad$ -   - The area of the shape is $\qquad$ squared centimetres or $\qquad$ $\mathrm{cm}^{2}$.	
Previous, current and future learning objectives for measures	


Year 4 Vocabulary	Year 5 Vocabulary
Previous whole number, next whole number   Mixed number   Equivalent   Improper fraction	' 1 is 10 times the size the one-tenth.'   'One-tenth is 10 times the size of one-hundredth.'   ' 1 is 100 times the size of one-hundredth'   ' 10 tenths is equal to 1 one.'   ' 10 hundredths is equal to 1 tenth.'   ' 100 hundredths is equal to 1 one.'   Hundredth more/less   Midpoint (e.g. a is 0.14 because it is 1 hundredths less than the midpoint of 0.1 and 0.2 ,   which is 0.15.')   Unit fraction   Decimal fraction   'Chain of equivalent fractions',
Maths STEM sentences:   - I know a whole has $\qquad$ parts. Each part is worth a $\qquad$ This is the same as $\underline{1 / 8}$.   - I know that $\qquad$ of the shapeis shaded because $\qquad$   - I know that I have found a fifth of something because $\qquad$   - $\qquad$ is equal to $\qquad$ I know this because $\qquad$   - I know that the fraction $\qquad$ has been shaded because $\qquad$   - I know $\qquad$ hundredths are shaded because $\qquad$   - I know that I need $\qquad$ hundredths to make a whole/tenths.   - When I am writing hundredths, the $\qquad$ is always. (denominator)   - IfI startat $\qquad$ hundredths, $\qquad$ will be next.   - I know that the $\qquad$ hundredths comes between $\qquad$ and $\qquad$   - I know equivalentmeans $\qquad$ is $\qquad$ and means - $\qquad$	- I know that a decimal is $\qquad$ .   - I know that 0.1 metres is $\qquad$ in centimetres.   - I know that a zero is important when dividing a number by 10 because $\qquad$ .   - When I partition the number $\qquad$ , there are $\qquad$ ones, $\qquad$ tenths, and $\qquad$ hundredths $\qquad$ = $\qquad$ $+$ $\qquad$ $\qquad$ $+$ $\qquad$ (with decimal places).   - I know the value of the $\qquad$ in the number $\qquad$ -.   - I know an improper fraction/mixed number is $\qquad$ . I can provide an example $\qquad$ I can convert between them by -. $\qquad$   - I know you need $\qquad$ to simplify fractions/find equivalent fractions.   - I know to add/subtract/multiply a fraction, I have to $\qquad$ .   - To find a fraction of an amount, I know you need to divide by $\qquad$ and multiply by $\qquad$   - I know that to convert a decimal to a percentage I $\qquad$   - $\qquad$ (percentage) $=$ $\qquad$ (fraction) = $\qquad$ (decimal)   - Percent means

## Previous, current and future learning objectives for fractions

## Year 5 - Statistics

Year 4 Vocabulary	Year 5 Vocabulary
No specific vocabulary -see previous year groups.	No specific vocabulary-see previous year groups.

## Maths STEM sentences:

- I know the $\qquad$ axis is $\qquad$
$\qquad$ . I worked this out by $\qquad$ .
- I know the scale goes up in __. I worked this $\qquad$ .


## Previous, current and future year groups learning objectives for Statistics

## Maths overviews.

As a collaboration we have an agreed Maths overview for each year. The Maths overview is created before the start of the new academic year taking into account your thoughts, any gaps the children have and assessments.

The overviews are intended to be flexible working documents that address gaps and met the needs of our children. However, if you do intend to make changes can you inform the Maths lead first.

## Useful links:

EYFS overview
Year 1 overview
Year 2 overview
Year 3 overview
Year 4 overview
Year 5 overview
Year 6 overview


[^0]:    Previous, current and future learning linked to fractions.

[^1]:    Previous, current and future learning objectives for division

